Estimates of the optimal density of sphere packings in high dimensions

نویسندگان

  • A. Scardicchio
  • F. H. Stillinger
  • S. Torquato
  • Joseph Henry
چکیده

in high dimensions A. Scardicchio, F. H. Stillinger, and S. Torquato Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA Princeton Center for Theoretical Physics, Princeton University, Princeton, New Jersey 08544, USA Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, 08540, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Sphere Packings in High Dimension

We improve on the lower bounds for the optimal density of sphere packings. In all sufficiently large dimensions the improvement is by a factor of at least 10, 000; along a sparse sequence of dimensions ni we improve the density by roughly log log ni.

متن کامل

Efficient linear programming algorithm to generate the densest lattice sphere packings.

Finding the densest sphere packing in d-dimensional Euclidean space R(d) is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to ...

متن کامل

New Conjectural Lower Bounds on the Optimal Density of Sphere Packings

Sphere packings in high dimensions interest mathematicians and physicists and have direct applications in communications theory. Remarkably, no one has been able to provide exponential improvement on a 100-year-old lower bound on the maximal packing density due to Minkowski in d-dimensional Euclidean space R. The asymptotic behavior of this bound is controlled by 2 in high dimensions. Using an ...

متن کامل

New Provisional Lower Bounds on the Optimal Density of Sphere Packings

Sphere packings in high dimensions interest mathematicians and physicists and have direct applications in communications theory. Remarkably, no one has been able to provide exponential improvement on a 100-year-old lower bound on the maximal packing density due to Minkowski in d-dimensional Euclidean space Rd. The asymptotic behavior of this bound is controlled by 2 in high dimensions. Using an...

متن کامل

Density Doubling, Double-circulants, and New Sphere Packings

New nonlattice sphere packings in dimensions 20, 22, and 44–47 that are denser than the best previously known sphere packings were recently discovered. We extend these results, showing that the density of many sphere packings in dimensions just below a power of 2 can be doubled using orthogonal binary codes. This produces new dense sphere packings in Rn for n = 25, 26, . . . , 31 and 55, 56, . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008